


### [H[ SIL

ПРЕОБРАЗОВАТЕЛИ
ИЗМЕРИТЕЛЬНЫЕ
МНОГОФУНКЦИОНАЛЬНЫЕ
ЭнИ-3120-DI



Руководство по эксплуатации ЭИ.301.00.000РЭ

www.eni-bbmv.ru info@en-i.ru

#### СОДЕРЖАНИЕ

| 1  | НАЗНАЧЕНИЕ                     | 2  |
|----|--------------------------------|----|
| 2  | ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ     | 3  |
| 3  | ОБОЗНАЧЕНИЕ ПРИ ЗАКАЗЕ         | 4  |
| 4  | КОМПЛЕКТНОСТЬ                  | 6  |
| 5  | УСТРОЙСТВО И ПРИНЦИП ДЕЙСТВИЯ  | 7  |
| 6  | МЕРЫ БЕЗОПАСНОСТИ              | 21 |
| 7  | МОНТАЖ                         | 21 |
| 8  | ПОДГОТОВКА К ЭКСПЛУАТАЦИИ      | 27 |
| 9  | МАРКИРОВКА И ПЛОМБИРОВАНИЕ     | 28 |
| 10 | УПАКОВКА                       | 28 |
| 11 | ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ   | 29 |
| ПΡ | ИЛОЖЕНИЕ А Габаритные размеры  | 30 |
| ΠР | ИЛОЖЕНИЕ Б Схемы подключения   | 34 |
| ПΡ | ИЛОЖЕНИЕ В Подключение питания | 41 |

Руководство по эксплуатации содержит технические характеристики, правила эксплуатации, описание принципа действия преобразователей измерительных многофункциональных (модулей гальванической развязки) ЭнИ-3120-DI (далее модули).

#### 1 НАЗНАЧЕНИЕ

- 1.1 Модули предназначены для подключения датчиков с выходными дискретными сигналами, в том числе с контролем цепи, датчиков с выходным сигналом NAMUR по ГОСТ IEC 60947-5-6. Модули обеспечивают питание датчика.
- 1.2 Модули могут применяться в различных отраслях промышленности в системах автоматического контроля, регулирования и управления технологическими процессами.
  - 1.3 Модули являются активными.
- 1.4 Модули могут содержать один или два независимых, гальванически развязанных каналов.
- 1.5 Модули имеют гальваническую развязку между каналами, входом, выходом и источником питания.
- 1.6 Модули по устойчивости к климатическим воздействиям соответствуют исполнению УХЛ категории 3 по ГОСТ 15150, группы исполнения С4 по ГОСТ 52931 для работы при температуре от минус 40 до плюс 70 °C.
  - 1.7 При эксплуатации модулей допускаются воздействия:
    - вибрации с частотой от 5 до 25 Гц и амплитудой до 0,1 мм;
    - магнитных полей постоянного и переменного тока с частотой (50 ± 1) Гц и напряженностью до 400 А/м;
    - относительной влажности от 30 до 80 % в диапазоне рабочих температур без конденсации влаги.
  - 1.8 Модули не создают индустриальных помех.
- 1.9 Модули являются восстанавливаемыми изделиями. Ремонт и восстановление модулей осуществляет предприятие-изготовитель.
- 1.10 Предприятие-изготовитель оставляет за собой право вносить изменения в техническую документацию на изделия без предварительного уведомления, сохранив при этом функциональные возможности и назначение.
- 1.11 Потребитель несет ответственность за определение возможности применения продукции ООО «Энергия-Источник» в

каждом отдельном случае использования, потому что только потребитель имеет полное представление обо всех ограничениях и факторах влияния, связанных с конкретным применением продукции.

#### **2 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ**

2.1 Условное обозначение модулей, входные и выходные сигналы приведены в таблице 1.

Таблица 1 — Условные обозначения модуля

| Наименование   | Количество<br>каналов | Входной сигнал     | Выходной сигнал     |
|----------------|-----------------------|--------------------|---------------------|
| ЭнИ-3120-DI-1к | 1                     | THOUSOTH IN OUTHOR | открытый коллектор, |
| ЭнИ-3120-DI-2к | 2                     | дискретный сигнал  | сухой контакт       |

2.2 Основные технические характеристики приведены в таблице 2.

Таблица 2 — Основные технические характеристики

| Параметр                                                             | Значение      |
|----------------------------------------------------------------------|---------------|
| Диапазон напряжения питания постоянного тока, В                      | 2030          |
| Потребляемая мощность, Вт, не более                                  |               |
| — ЭнИ-3120-DI-1к                                                     | 3             |
| — ЭнИ-3120-DI-2к                                                     | 6             |
| Конструктивное исполнение пластмассовый корпус для монтажа на DIN-ре | ейке NS35/7,5 |
| Степень защиты по ГОСТ 14254                                         | IP20          |
| Средняя наработка на отказ с учетом технического обслуживания, часов | 150000        |
| Средний срок службы, лет                                             | 15            |
| Масса модуля, кг, не более                                           | 0,2           |

- 2.3 Передаточные характеристики.
- 2.3.1 Напряжение холостого хода на входе (на ненагруженном входе), не более  $8.2 \pm 0.2$  В.
- 2.3.2 Значение тока короткого замыкания во входных цепях, не более 8 мА.
- 2.3.3 Исполнительные транзисторы (открытый коллектор) выходных цепей обеспечивают коммутацию:
  - (код A) постоянного тока 25 мA, 80 B, частотой 0...5 кГц;
  - (код Б) постоянного тока 2 A, 60 B, частотой 0...50 Гц.
- 2.3.4 Исполнительные реле выходных цепей обеспечивают коммутацию:
  - (код В, Γ) постоянного тока до 2 А напряжения до 220 В, но не более 60 Вт или переменного тока до 2 А

напряжения до 250 В, но не более 62,5 В·А, частотой до 10 Гц. Механическая наработка циклов срабатывания реле не менее 10<sup>8</sup>.

- 2.3.5 Задержка передачи дискретных сигналов от входных к выходным цепям, не более 100 мс.
- 2.3.6 Значения силы постоянного тока в цепях датчиков для состояний «включен», «выключен», «короткое замыкание» и «обрыв датчика» приведены в таблице 3.

Таблица 3 — Значения силы постоянного тока в цепях датчиков

| Ток в цепи    | Состояние датчика                                   | Состояние выхода     |                |
|---------------|-----------------------------------------------------|----------------------|----------------|
| датчика, мА   | оостояние датчика                                   | Выход канала         | Выход «Ошибка» |
| менее 0,2     | обрыв цепи датчика                                  | выключен             | включен        |
| от 0,2 до 1,2 | датчик выключен                                     | выключен             | выключен       |
| от 1,2 до 2,1 | неопределенное<br>состояние датчика<br>(гистерезис) | выключен или включен | выключен       |
| от 2,1 до 5,8 | датчик включен                                      | включен              | выключен       |
| более 5,8     | короткое замыкание цепи<br>датчика                  | включен              | включен        |

- 2.4 Изоляция входных цепей относительно выходных цепей, цепей питания и между собой выдерживает при температуре  $(23\pm2)$  °C в течение одной минуты действие испытательного напряжения синусоидальной формы с частотой  $(50\pm2)$  Гц:
  - 1500 В при относительной влажности до 80 %;
  - 900 В при относительной влажности 95 ± 2 %.

Для модулей с кодом исполнения выходных устройств Д — только для входных искробезопасных цепей. Выходные цепи каналов имеют связь по эмиттерам транзисторов.

2.5 Электрическое сопротивление изоляции входных цепей относительно выходных цепей, цепей питания и между собой, измеренное при испытательном напряжении 500 В не менее 40 МОм.

#### 3 ОБОЗНАЧЕНИЕ ПРИ ЗАКАЗЕ

Пример обозначения при заказе:

где 1 — наименование;

2 — количество каналов:

— 1к — один канал;

- 2к два канала;
- 3 тип основного выходного устройства:
- A транзистор коммутация постоянного тока 25 мA, 80 B, частотой 0...5 кГц;
- Б— транзистор— коммутация постоянного тока 2 A, 60 B, частотой 0…50 Гц;
- В<sup>1)</sup> реле замыкающий (размыкающий) контакт;
- Г¹) реле перекидной контакт;
- Д транзистор коммутация постоянного тока 25 мА, 60 В, частотой 0…50 кГц;
- 4 тип дополнительного выходного устройства («Ошибка»):
- символ отсутствует модуль не имеет дополнительных выходов;
- А транзистор коммутация постоянного тока 25 мА, 80 В (только с типом основных выходов А и Б);
- Б транзистор коммутация постоянного тока 2 A, 60 B (только с типом основных выходов A и Б);
- В реле замыкающий (размыкающий) контакт (только с типом основных выходов В);
- Г реле перекидной контакт (только для исполнения ЭнИ-3120-DI-1к-Г-Г);
- Д транзистор коммутация постоянного тока 25 мА, 60 В (только с типом основных выходов Д);
- 5 тип разъемов:
- символ отсутствует разъем с винтовыми клеммниками;
- ПК разъем с пружинными клеммниками и тестовыми гнездами;
- 6 дополнительная технологическая наработка до 360 часов (по заказу).

#### Примечание — По заказу поставляется:

- модуль резисторов NAMUR ЭнИ-410;
- блок питания БПИ-24-TBUS;
- модуль питания и контроля шины TBUS ЭнИ-610;
- DIN-рейка NS35/7,5;

-

 $<sup>^{1)}</sup>$  Предельные параметры коммутируемых цепей для модулей исполнения В и  $\Gamma$  приведены в п. 2.3.4.

- шинный соединитель на DIN-рейку (ME 22,5 TBUS 1,5/5-ST-3,81 или аналог) для модулей ЭнИ-3120-DI;
- шинный соединитель на DIN-рейку (ME 22,5 TBUS ADAPTER KMGY или аналог);
- разъем «вилка» с винтовыми клеммниками (MC 1,5/5 ST 3,81 или аналог);
- разъем «розетка» с винтовыми клеммниками (IMC 1,5/5 ST 3,81 или аналог).

#### 4 КОМПЛЕКТНОСТЬ

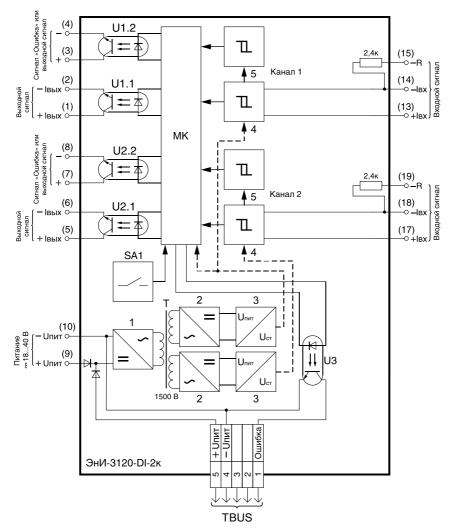
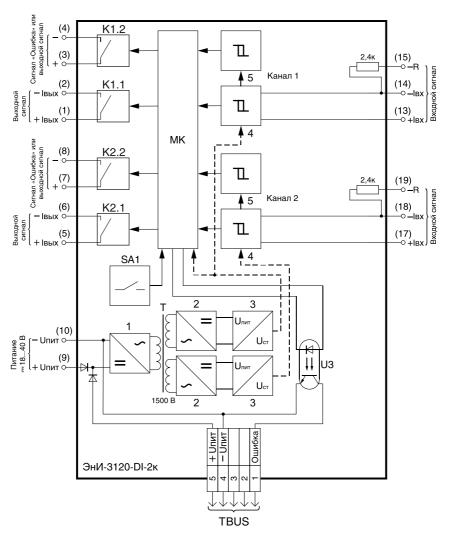

4.1 Комплект поставки модулей должен соответствовать таблице 4.

Таблица 4 — Комплект поставки

| Tacsivida 1 Remission freetables                                        |                                              |             |                                                |  |  |
|-------------------------------------------------------------------------|----------------------------------------------|-------------|------------------------------------------------|--|--|
| Наименование                                                            | Обозначение                                  | Количество  | Примечание                                     |  |  |
| Преобразователь измери-<br>тельный многофункциональ-<br>ный ЭнИ-3120-DI | ЭИ.301.00.000                                | 1           | соответственно заказу                          |  |  |
| Паспорт                                                                 | ЭИ.86.00.000ПС                               | 1           |                                                |  |  |
| Руководство по эксплуатации                                             | ЭИ.301.00.000РЭ                              |             | яру на 30 преобразова-<br>зляемых в один адрес |  |  |
| Колодка (4 контакта)                                                    | MSTBT 2,5 HC/ 4-<br>STP KMGY или ана-<br>лог | В зависимо- | для преобразовате-<br>лей без индекса «ПК»     |  |  |
| Колодка (4 контакта, Push-in)                                           | FKCT 2,5/ 4-ST<br>KMGY или аналог            | полнения    | для преобразовате-<br>лей с индексом «ПК»      |  |  |
| Модуль резисторов NAMUR<br>ЭнИ-410                                      | ЭИ.232.00.000                                |             | по заказу                                      |  |  |
| Блок питания БПИ-24-TBUS                                                | ЭИ.234.00.000                                |             | по заказу                                      |  |  |
| Модуль питания и контроля<br>шины TBUS ЭнИ-610                          | ЭИ.233.00.000                                |             | по заказу                                      |  |  |
| Шинный соединитель на DIN-<br>рейку                                     | ME 22,5 TBUS 1,5/5-<br>ST-3,81 или аналог    |             | по заказу                                      |  |  |
| Шинный соединитель на DIN-<br>рейку                                     | ME 22,5 TBUS<br>ADAPTER KMGY<br>или аналог   |             | по заказу                                      |  |  |
| Разъем «вилка» с винтовыми<br>клеммниками                               | MC 1,5/5 ST 3,81<br>или аналог               |             | по заказу                                      |  |  |
| Разъем «розетка» с винто-<br>выми клеммниками                           | IMC 1,5/5 ST 3,81<br>или аналог              |             | по заказу                                      |  |  |
| DIN-рейка                                                               | NS35/7,5                                     |             | по заказу                                      |  |  |


#### 5 УСТРОЙСТВО И ПРИНЦИП ДЕЙСТВИЯ

- 5.1 Габаритные и установочные размеры модулей приведены в приложении А.
- 5.2 Корпус модулей имеет неразборную конструкцию. Внутри корпуса закреплена печатная плата, на которой установлены разъемы для подключения внешних цепей, переключатели для определения логики срабатывания выходных устройств. В соответствии с заказом модули могут укомплектовываться разъемами с винтовыми клеммниками или разъемами с пружинными клеммниками и тестовыми гнездами.
- 5.3 На модули возможно подавать питание как на клеммную колодку (контакты 9, 10), так и по шине TBUS (контакты 5, 4). Модуль имеет защиту от неправильного подключения (переполюсовки) напряжения питания.
- 5.4 Функциональные схемы модулей приведены на рисунках 1—4. Упрощенные функциональные схемы модулей приведены на рисунках 5—8.
- 5.5 Модули содержат следующие функциональные элементы и узлы (см. рисунки 1—4):
  - микроконтроллер (МК), управляющий выходными устройствами согласно заданной логики срабатывания;
  - переключатели (SA1) определяющие логику срабатывания выходных устройств;
  - компараторы (позиция 4) преобразующие входные аналоговые сигналы от датчиков в дискретные выходные сигналы в соответствии с порогами срабатывания и гистерезисом по NAMUR (см. рисунок 8);
  - компараторы (позиция 5) выходов «Ошибка» контролирующие значения входных сигналов и формирующие сигнал «Ошибка», если входной сигнал выше или ниже пороговых значений (см. таблицу 4);
  - встроенный импульсный источник питания (позиции 1, 2, 3) питающий входные цепи модулей (цепи датчиков);
  - оптопары U3 коммутирующие сигнал «Общая ошибка» на контакт 1 шины TBUS;
  - встроенные резисторы 2,4 кОм служат для упрощения реализации схемы контроля цепи. (отсутствует необходимость во внешнем резисторе 0,4...2,9 кОм).



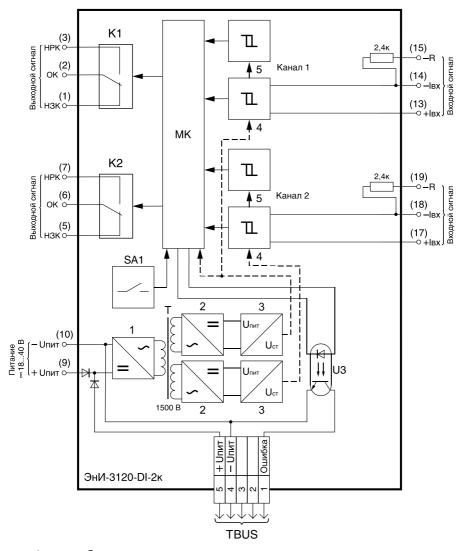

- 1 преобразователь напряжения постоянного тока в переменное;
- выпрямители и преобразователи напряжения переменного тока в постоянное;
- 3 стабилизаторы напряжения;
- 4 компараторы входов;
- 5 компараторы сигнала «Ошибка»;
- U1.1, U1.2, U2.1, U2.2 оптопары (исполнения A, Б);
- Т изолирующий трансформатор.

Рисунок 1 — Функциональная схема ЭнИ-3120-DI-2к-А-Б




- 1 преобразователь напряжения постоянного тока в переменное;
- выпрямители и преобразователи напряжения переменного тока в постоянное;
- 3 стабилизаторы напряжения;
- 4 компараторы входа;
- 5 компараторы сигнала «Ошибка»;
- К1.1, К1.2, К2.1, К2.2 реле (исполнение В);
- Т изолирующий трансформатор.

Рисунок 2 — Функциональная схема ЭнИ-3120-DI-2к-В-В



- 1 преобразователь напряжения постоянного тока в переменное;
- выпрямители и преобразователи напряжения переменного тока в постоянное;
- 3 стабилизаторы напряжения;
- 4 компараторы входов;
- 5 компараторы сигналов «Ошибка»;
- К1, К2 реле (перекидной контакт, исполнение Г);
- Т изолирующий трансформатор.

Рисунок 3 — Функциональная схема ЭнИ-3120-DI-2к-Г



- 1 преобразователь напряжения постоянного тока в переменное;
- 2 выпрямители и преобразователи напряжения переменного тока в постоянное:
- 3 стабилизаторы напряжения;
- 4 компараторы входов;
- 5 компараторы сигнала «Ошибка»;
- U1.1, U1.2, U2.1, U2.2 оптопары (исполнения A, Б);
- Т изолирующий трансформатор.

Рисунок 4 — Функциональная схема ЭнИ-3120-DI-2к -Д-Д

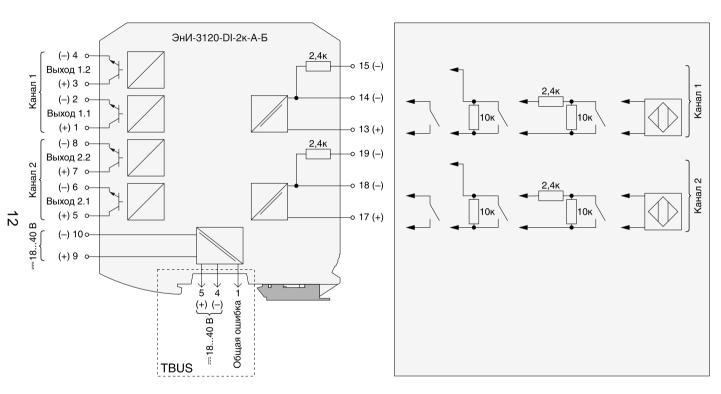



Рисунок 5 — Упрощенная функциональная схема ЭнИ-3120-DI-2к-А-Б

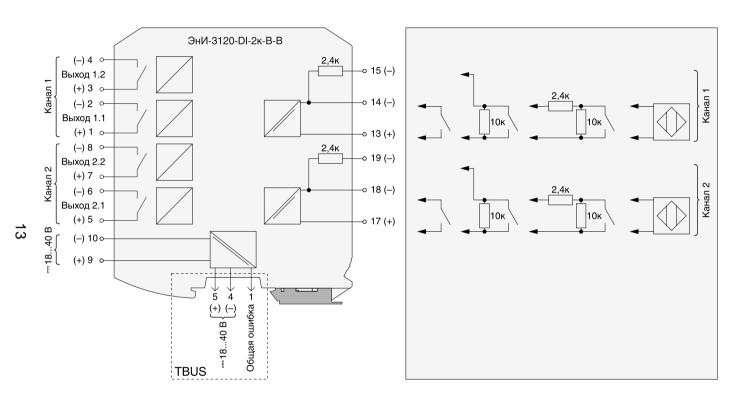



Рисунок 6 — Упрощенная функциональная схема ЭнИ-3120-DI-2к-B-B

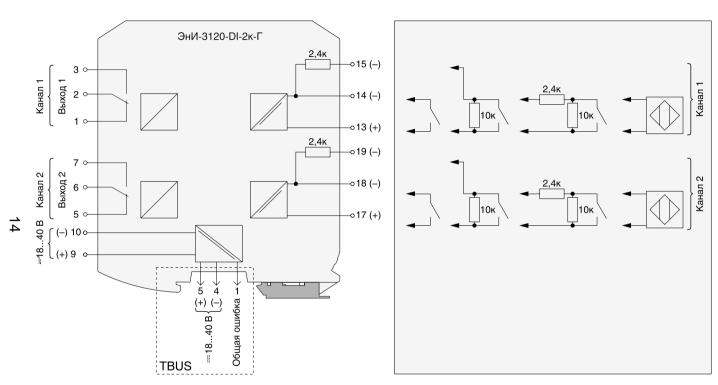



Рисунок 7 — Упрощенная функциональная схема ЭнИ-3120-DI-2к-Г

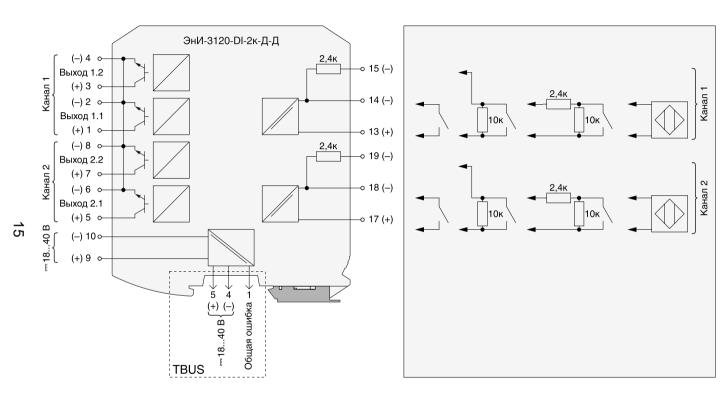



Рисунок 8 — Упрощенная функциональная схема ЭнИ-3120-DI-2к-Д-Д

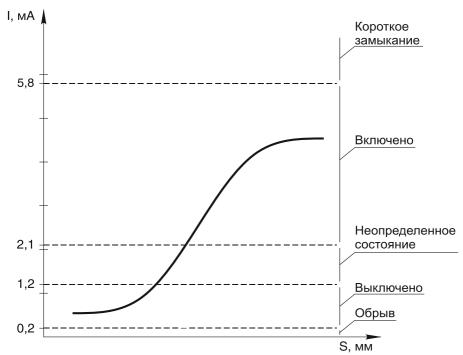



Рисунок 9 — Пороговые значения входного тока по NAMUR

- 5.8 Внутреннее сопротивление датчика изменяется в зависимости от его состояния «включен»/«выключен». Модуль подает в цепь связи с датчиком напряжение питания. Потребляемый ток изменяется в зависимости от внутреннего сопротивления датчика и измеряется на внутреннем сопротивлении модуля (около 1,2 кОм). Модуль регистрирует пороговые значения тока компаратором и преобразует их из аналоговых в дискретные, а затем передает на выход через оптопары или реле для обеспечения гальванической развязки.
- 5.9 Модуль является микропроцессорным прибором и позволяет определять логику срабатывания выходных устройств с помощью переключателей на лицевой панели (см. рисунок 10).
- 5.10 Логика работы каждого канала определяется пятью переключателями.

**Примечание** — В одноканальных исполнениях переключатели для второго канала не задействованы и не изменяют логику срабатывания выходных устройств.

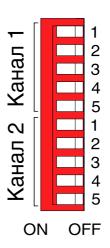



Рисунок 10 — Переключатели на лицевой панели

5.11 Функциональное назначение переключателей и положение по умолчанию приведены в таблице 5.

Таблица 5 — Назначение переключателей

ваны.

| Номер<br>переклю-<br>чателя                                                                                                        | Назначение<br>переключателя                 | Состояние<br>переключателя                      | Положение по<br>умолчанию |  |
|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------|---------------------------|--|
| 1                                                                                                                                  | Контроль состояния                          | ON — контроль состояния цепи<br>датчика включен | ON                        |  |
|                                                                                                                                    | цепи датчика                                | OFF — контроль состояния цепи датчика выключен  | ON                        |  |
| 2                                                                                                                                  | Логика работы основ-                        | ON — прямая логика                              | ON                        |  |
| 2                                                                                                                                  | ного выхода                                 | OFF — обратная логика                           | ON                        |  |
| 3                                                                                                                                  | Логика работы допол-                        | ON — прямая логика                              | ON                        |  |
| нительного выхода                                                                                                                  |                                             | OFF — обратная логика                           | ON                        |  |
| 4                                                                                                                                  | Режим работы допол-                         | ON — «Повторитель»                              | OFF                       |  |
| 4                                                                                                                                  | нительного выхода                           | OFF — «Ошибка»                                  | OFF                       |  |
| 5 <sup>1)</sup>                                                                                                                    | Контроль состояния<br>цепи датчика основным | ON — контроль включен                           | OFF                       |  |
| ,                                                                                                                                  |                                             | OFF — контроль выключен                         | OFF                       |  |
| 1) Контроль состояния цепи датчика основным выходом присутствует только в мо-<br>дулях с исполнением выходных устройств «В» и «Г». |                                             |                                                 |                           |  |

<sup>5.12</sup> Переключатель «1» позволяет включить (положение «ON») функцию контроля состояния цепи датчика, при возникновении неисправности (обрыв, короткое замыкание) срабатывает выход в режиме «Ошибка», подается сигнал «Общая ошибка» на шину TBUS. При отключенной (положение «OFF») функции контроль состояния цепи датчика не осуществляется, выход «Ошибка» и «Общая ошибка» шины TBUS не задейство-

- 5.13 Переключатели 2 и 3 позволяют определить логику срабатывания основного и дополнительного выхода соответственно. В положении «ON» логика прямая, «OFF» обратная.
- 5.14 Режим работы дополнительного выхода возможно изменить переключателем «4», для активации режима «Ошибка» переведите переключатель в положение «ОFF» или в положение «ON» для активации режима «Повторитель». В режиме «Повторитель» дополнительный выход дублирует основной выход.

**Примечание** — Активация режима «Повторитель» не изменяет логику светодиодной индикации неисправности цепи датчика и общего выхода «Ошибка» шины TBUS.

- 5.15 При включенной функции контроля состояния цепи датчика возможно включить функцию отключения основного выхода при обнаружении неисправности цепи (обрыв, короткое замыкание). Включение функции производится переведением переключателя «5» в положение «ON».
- 5.16 Логика работы модуля с установками по умолчанию приведена в таблице 6.

Таблица 6 — Логика работы выходов

| таолица о — логика расоты выходов                                                          |                   |                               |                        |  |  |
|--------------------------------------------------------------------------------------------|-------------------|-------------------------------|------------------------|--|--|
| Состояние модуля                                                                           | Основной<br>выход | Дополнительный выход «Ошибка» | «Общая ошибка»<br>TBUS |  |  |
| Питание отсутствует, модуль<br>выключен                                                    | -                 | _                             | -                      |  |  |
| Модуль включен, ток во входной<br>цепи в диапазоне от 2,1 до<br>5,8 мА (датчик включен)    | +                 | -                             | _                      |  |  |
| Модуль включен, ток во входной<br>цепи в диапазоне от 0,2 до<br>1,2 мА (датчик выключен)   | -                 | _                             | _                      |  |  |
| Модуль включен, ток во входной<br>цепи более 5,8 мА (короткое за-<br>мыкание цепи датчика) | +                 | +                             | +                      |  |  |
| Модуль включен, ток во входной<br>цепи менее 0,2 мА (обрыв цепи<br>датчика)                | -                 | +                             | +                      |  |  |
| Примечания:                                                                                |                   |                               |                        |  |  |
| — «+» — замкнут:                                                                           |                   |                               |                        |  |  |

— «+» — замкнут;

— «-» — разомкнут.

5.17 На лицевой панели модуля расположены светодиоды индикации. Режимы индикации, в зависимости от заданной логики работы модуля, приведены в таблицах 7—9.

- 5.18 При изменении состояния входного сигнала на время более 50 мс, светодиод «Вход» прямо повторяет состояние датчика в соответствие с таблицами 7—9.
- 5.19 При изменении состояния входного сигнала на время менее 50 мс, светодиод «Вход» сигнализирует следующей последовательностью:
  - светится 400 мс:
  - 3 раза мигает с периодом 120 мс;
  - светится 400 мс.

После окончания данной последовательности светодиод либо принимает значение в соответствие с таблицами 7—9, либо повторяет последовательность (при детектировании нового изменения входного сигнала на время менее 50 мс).

5.20 Режим индикации при активной функции контроля состояния цепи (переключатель «1» в положении «ON») и подключении датчика с выходным сигналом NAMUR EN 60947 (рисунок Б.1) или датчиков с выходным дискретным сигналом («сухой контакт») и собранной схемой контроля цепи (рисунки Б.2, Б.3), либо с применением модуля резисторов (рисунок Б.3) приведен в таблице 7.

Таблица 7 — Режимы индикации с контролем цепи

| таолица 7 — Режимы индикации с контролем цепи                                                                                      |           |                |  |
|------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------|--|
| Соотодино молупа                                                                                                                   | Светодиод |                |  |
| Состояние модуля                                                                                                                   | «Питание» | «Вход»         |  |
| Питание отсутствует, модуль выключен                                                                                               | ı         | _              |  |
| Модуль включен, ток во входной цепи в диапазоне от 2,1 до 5,8 мА (датчик включен, выход модуля включен, выход «Ошибка» выключен)   |           | +<br>зеленый   |  |
| Модуль включен, ток во входной цепи в диапазоне от 0,2 до 1,2 мА (датчик выключен, выход модуля выключен, выход «Ошибка» выключен) |           | _              |  |
| Модуль включен, ток во входной цепи более 5,8 мА (короткое замыкание цепи датчика, выход модуля включен, выход «Ошибка» включен)   |           | +<br>оранжевый |  |
| Модуль включен, ток во входной цепи менее 0,2 мА (обрыв цепи датчика, выход модуля выключен, выход «Ошибка» включен)               |           | +<br>красный   |  |
| Примечания:                                                                                                                        |           |                |  |

- «+» светится;
- «-» не светится.

5.21 Режим индикации при активной функции контроля состояния цепи (переключатель «1» в положении «ON») и подключении датчика с выходным дискретным сигналом («сухой контакт»)

без реализации схем контроля состояния цепи (рисунок Б.2, первый канал) приведен в таблице 8.

Таблица 8 — Режимы индикации с контролем цепи

| Taosinga o Texnilibi ili gilkagili e komposieli      | цени      |                |
|------------------------------------------------------|-----------|----------------|
| Coordinate                                           | Светодиод |                |
| Состояние модуля                                     | «Питание» | «Вход»         |
| Питание отсутствует, модуль выключен                 | ı         | _              |
| Модуль включен, ток во входной цепи более 5,8 мА     |           |                |
| (датчик включен или короткое замыкание в цепи, выход | +         | т<br>оранжевый |
| модуля включен, выход «Ошибка» включен)              |           | оранжевый      |
| Модуль включен, ток во входной цепи менее 0,2 мА     |           | _              |
| (датчик отключен или обрыв цепи датчика, выход мо-   | +         | красный        |
| дуля выключен, выход «Ошибка» включен)               |           | красный        |
| Примечания:                                          |           |                |
| — "+" — CDOTINTOG:                                   |           |                |

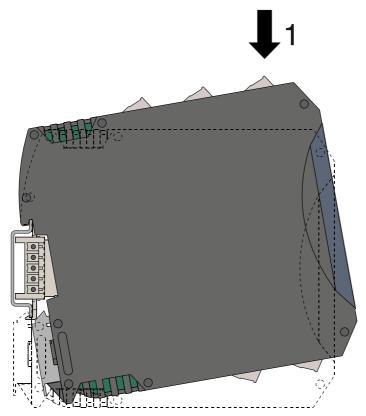
- «+» светится;
- «-» не светится.

5.22 Режим индикации при выключенной функции контроля состояния цепи (переключатель «1» в положении «ОFF») и подключении датчика с выходным дискретным сигналом («сухой контакт») без реализации схем контроля состояния цепи (рисунок Б.2, первый канал) приведен в таблице 9.

Таблица 9 — Режимы индикации без контроля цепи

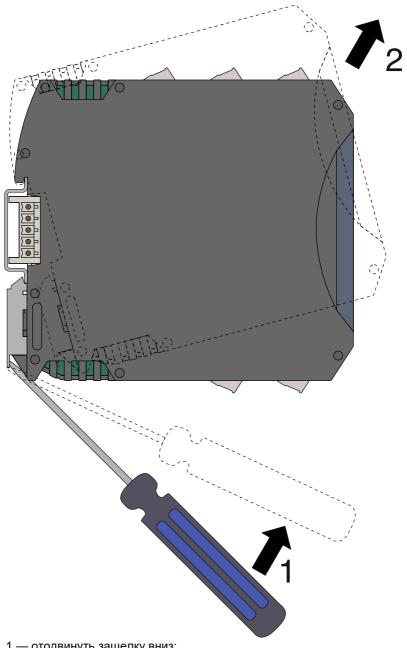
| C                                                                                                                                        | Светодиод |              |
|------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------|
| Состояние модуля                                                                                                                         | «Питание» | «Вход»       |
| Питание отсутствует, модуль выключен                                                                                                     | _         | _            |
| Модуль включен, ток во входной цепи более 5,8 мА                                                                                         |           |              |
| (датчик включен или короткое замыкание в цепи, выход модуля включен, выход «Ошибка» включен)                                             | +         | т<br>зеленый |
| Модуль включен, ток во входной цепи менее 0,2 мА (датчик отключен или обрыв цепи датчика, выход модуля выключен, выход «Ошибка» включен) |           | _            |

#### Примечания:


- «+» светится;
- «-» не светится.

#### 6 МЕРЫ БЕЗОПАСНОСТИ

- 6.1 Обслуживающему персоналу запрещается работать без проведения инструктажа по технике безопасности.
- 6.2 К работе с модулями должны допускаться лица, прошедшие инструктаж по технике безопасности при работе с установками напряжением до 1000 В, ознакомленные с настоящим Руководством по эксплуатации.
- 6.3 По способу защиты человека от поражения электрическим током модули относятся к классу III по ГОСТ 12.2.007.0.


#### 7 МОНТАЖ

- 7.1 В зимнее время ящики с модулями следует распаковывать в отапливаемом помещении не менее чем через 8 часов после внесения их в помещение.
- 7.2 Перед тем, как приступить к монтажу модуля, необходимо его осмотреть. При этом необходимо проверить:
  - отсутствие вмятин и видимых механических повреждений корпуса;
  - состояние и надежность клеммных соединений.
- 7.3 Модули монтируются на DIN-рейке. Место установки модулей должно быть удобно для проведения монтажа, демонтажа и обслуживания.
- 7.4 Среда, окружающая модуль, не должна содержать примесей, вызывающих коррозию его деталей.
- 7.5 В местах установки модулей следует принять меры, чтобы исключить появление различного рода постоянных либо временных помех от работы силового электрооборудования.
- 7.6 Модули крепятся на горизонтально смонтированную DINрейку с помощью специальной защелки в соответствии с рисунком 11. Демонтаж модуля производится в обратной последовательности в соответствии с рисунком 12.



1 — установить модуль на DIN-рейку.

Рисунок 11 — Монтаж модуля на DIN-рейку



- 1 отодвинуть защелку вниз; 2 снять модуль с DIN-рейки.

Рисунок 12 — Демонтаж модуля с DIN-рейки

7.7 Для осуществления естественного охлаждения модулей необходимо обеспечить воздушные зазоры до стенок шкафа, кабель-каналов и рядом установленных приборов. Минимальные зазоры приведены на рисунке 13.

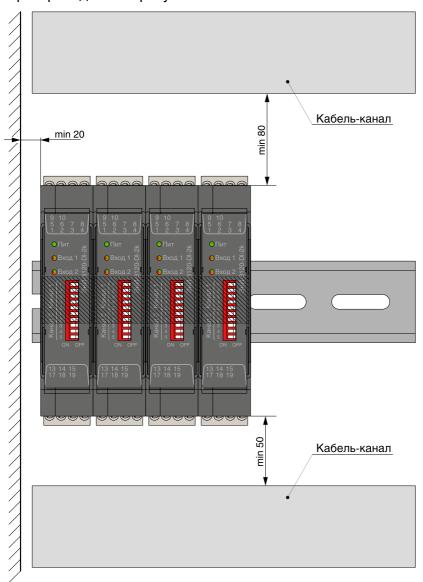
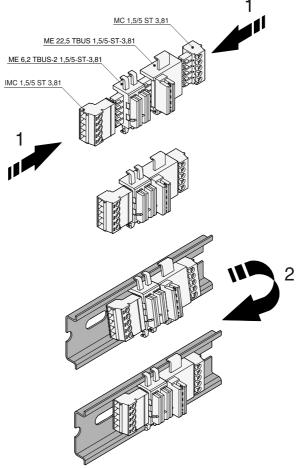
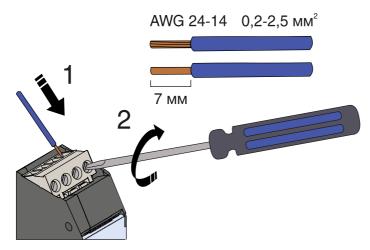



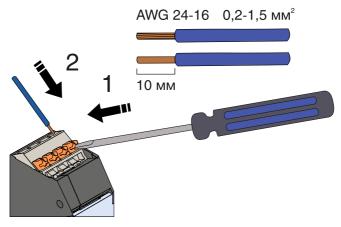

Рисунок 13 — Минимальные зазоры при монтаже

**Внимание!** Монтаж модулей, в замкнутом пространстве (щит, шкаф и т. д.) при недостаточной циркуляции воздуха, производить группами по пять модулей с соблюдением зазоров между группами не менее 5 мм для соблюдения температурного режима. При необходимости обеспечить принудительную вентиляцию.


7.8 При использовании шины TBUS перед монтажом модуля на DIN-рейку необходимо собрать шинные соединители в необходимом сочетании соответствии с рисунком 14.



- 1 собрать необходимые элементы шины между собой;
- 2 смонтировать на DIN-рейку и закрепить с помощью защелки.


Рисунок 14 — Монтаж шины TBUS

- 7.9 Схемы подключения модулей приведены в приложении Б, нумерация контактов приведена на рисунках приложения А.
- 7.10 Работы по монтажу и демонтажу модулей производить при выключенном напряжении питания.
- 7.11 Подключение жил кабеля производить в соответствии с рисунками 15, 16.
- 7.12 Подключение модуля производить отверткой с размерами шлица 0,6х2,8 (7810-0966 по ГОСТ 17199). Момент затяжки винтов клеммников 0,5  $H\cdot M$ .
- 7.13 При проведении монтажа обеспечить надежное присоединение жил кабеля к клеммникам исключив возможность замыкания жил кабелей.
- 7.14 Возможные варианты подключения питания через шину TBUS приведены в приложении В.



- 1 вставить жилу в клеммник;
- 2 затянуть винт клеммника отверткой.

Рисунок 15 — Монтаж жил кабеля в разъем с винтовыми клеммниками



- 1 нажать на кнопку;
- 2 вставить жилу в клеммник.

Рисунок 16 — Монтаж жил кабеля в разъем с пружинными клеммниками

#### 8 ПОДГОТОВКА К ЭКСПЛУАТАЦИИ

- 8.1 После окончания монтажа модуль готов к эксплуатации.
- 8.2 Перед включением модуля убедиться в соответствии его установки и монтажа указаниям, изложенным в разделах 6, 7. Изучить настоящее Руководство по эксплуатации.
- 8.3 Подать напряжение питания. Светодиод «Пит» начнет светится.
- 8.4 При эксплуатации модулей необходимо пользоваться настоящим Руководством по эксплуатации и другими нормативными документами.
- 8.5 При эксплуатации модулей необходимо проводить внешние осмотры в сроки, установленные предприятием, эксплуатирующим модулем.
  - 8.6 При внешнем осмотре необходимо проверить:
    - наличие маркировки;
    - отсутствие обрывов или повреждений кабелей;
    - надежность присоединения кабелей;
    - отсутствие пыли и грязи на модуле;
    - отсутствие вмятин, видимых механических повреждений корпус.
- 8.7 Эксплуатация модулей с повреждениями и неисправностями запрещена.

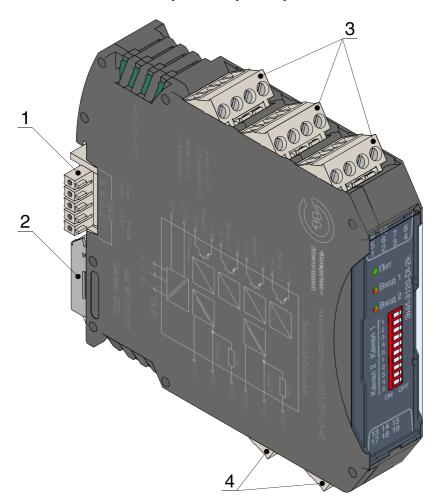
#### 9 МАРКИРОВКА И ПЛОМБИРОВАНИЕ

- 9.1 Маркировка модуля выполняется в соответствии с ГОСТ 18620 и содержит следующие надписи:
  - наименование модуля;
  - нумерацию контактов;
  - наименование предприятия-изготовителя;
  - напряжение питания;
  - рабочий температурный диапазон;
  - порядковый номер модуля по системе нумерации предприятия-изготовителя и год выпуска.
- 9.2 Пломбирование модуля осуществляют на стыке панелей корпуса наклеиванием гарантийной этикетки с логотипом предприятия-изготовителя.

#### 10 УПАКОВКА

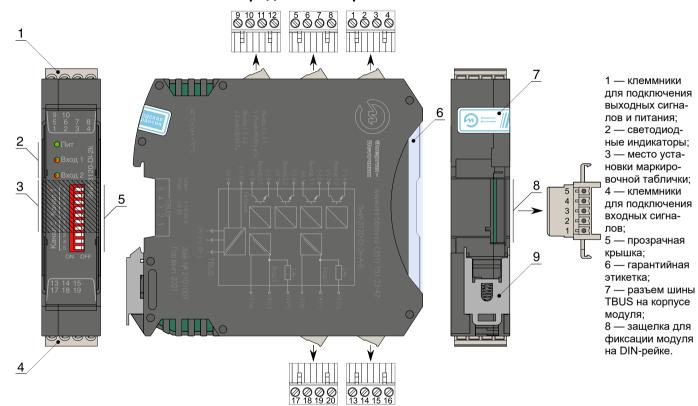
- 10.1 Упаковка модуля обеспечивает его сохранность при хранении и транспортировании.
- 10.2 Модуль и эксплуатационные документы помещены в пакет из полиэтиленовой пленки. Пакет упакован в потребительскую тару коробку из гофрированного картона. Свободное пространство в коробке заполнено с помощью прокладочного материала из гофрированного картона или воздушно-пузырьковой пленкой.
- 10.3 Коробки из гофрированного картона с модулями укладываются в транспортную тару ящики типа IV ГОСТ 5959 или ГОСТ 9142. Свободное пространство между коробками заполнено с помощью прокладочного материала из гофрированного картона или воздушно-пузырьковой пленкой.
- 10.4 При транспортировании в районы Крайнего Севера и труднодоступные районы модули должны быть упакованы в коробки из гофрированного картона, а затем в ящики типа III-1 по ГОСТ 2991 или типа VI по ГОСТ 5959 при отправке в контейнерах.
- 10.5 Ящики обиты внутри водонепроницаемым материалом, который предохраняет от проникновения пыли и влаги.
  - 10.6 Масса брутто не должна превышать 35 кг.
- 10.7 На транспортной таре в соответствии с ГОСТ 14192 нанесены несмываемой краской дополнительные и информаци-

онные надписи, а также манипуляционные знаки, соответствующие наименованию и назначению знаков «Хрупкое. Осторожно», «Верх», «Беречь от влаги».


10.8 Упаковывание изделия должно производится в закрытом вентилируемом помещении при температуре окружающего воздуха от 15 до 40 °C и относительной влажности до 80 % при отсутствии агрессивных примесей.

#### 11 ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

- 11.1 Модуль в упаковке транспортируются всеми видами транспорта, в том числе воздушным транспортом в отапливаемых герметизированных отсеках, в соответствии с правилами перевозок грузов, действующими на каждом виде транспорта.
- 11.2 Условия транспортирования должны соответствовать условиям 5 по ГОСТ 5150.
- 11.3 Условия хранения модуля в транспортной таре должны соответствовать условиям 5 по ГОСТ 15150.


#### ПРИЛОЖЕНИЕ А

#### Габаритные размеры



- 1 шинный соединитель ME 22,5 TBUS 1,5/5-ST-3,81 или аналог;
- 2 защелка для фиксации модуля на DIN-рейке;
- 3 клеммники для подключения выходных сигналов и питания;
- 4 клеммники для подключения входных сигналов.

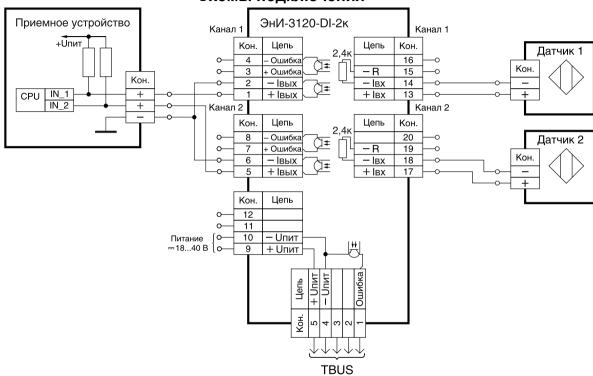
Рисунок А.1 — Внешний вид



 $\overline{\alpha}$ 

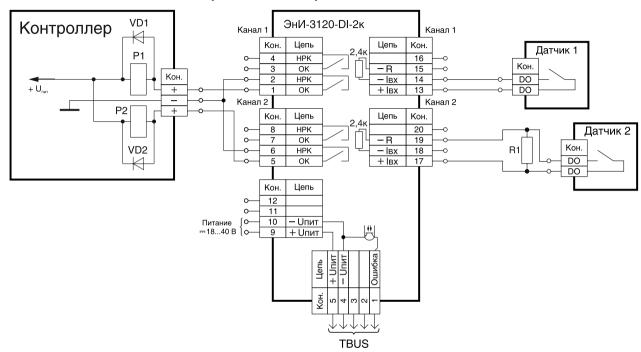
Рисунок А.2 — Элементы индикации, нумерация контактов

# Продолжение приложения А 110 ₹ 22,5 > 114,5


Рисунок А.3 — Габаритные размеры модуля с разъемами с винтовыми клеммниками

## Продолжение приложения А Вход 2 120 114,5 **₹** 22,5

Рисунок А.4 — Габаритные размеры модуля с разъемами с пружинными клеммниками и тестовыми гнездами

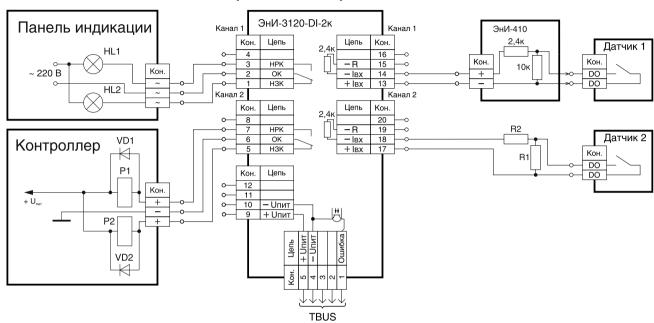

#### ПРИЛОЖЕНИЕ Б

### Схемы подключения



Датчик 1, 2 — датчик с выходным сигналом по стандарту NAMUR.

Рисунок Б.1 — Схема подключения ЭнИ-3120-DI к датчику с выходным сигналом по стандарту NAMUR




Датчик 1 — датчик с выходом типа «сухой контакт» (без реализации контроля цепи);

Датчик 2 — датчик с выходом типа «сухой контакт» (с реализацией контроля цепи при помощи встроенного резистора 2,4 кОм и внешнего резистора R1);

R1 — резистор 7,2...26,0 кОм.

Рисунок Б.2 — Схема подключения ЭнИ-3120-DI к датчикам типа «сухой контакт»



Датчик 1 — датчик «сухой (c реализацией выходом типа контакт» контроля цепи при помощи модуля резисторов NAMUR ЭнИ-410); Датчик 2 — датчик выходом типа «сухой контакт» (c реализацией контроля цепи при помощи

внешних резисторов R1 и R2); R1 — резистор 7,2...26,0 кОм;

R2 — резистор 0,4...2,9 кОм.

Рисунок Б.3 — Схема подключения ЭнИ-3120-DI к датчикам типа «сухой контакт»

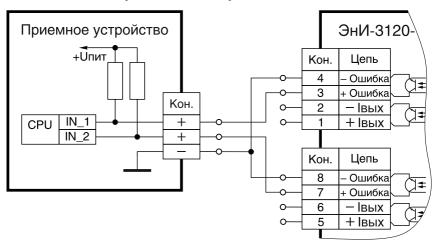



Рисунок Б.4 — Схема подключения выходов «Ошибка» модуля к контроллеру

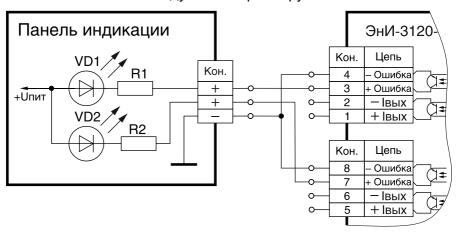



Рисунок Б.5 — Схема подключения выходов «Ошибка» модуля к светодиодной индикации

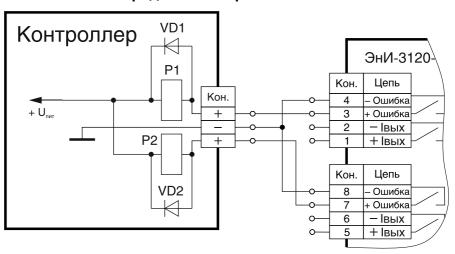
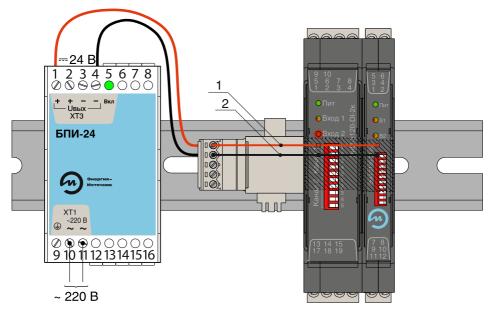
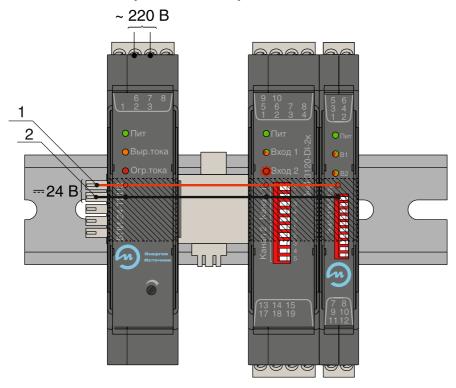




Рисунок Б.6 — Схема подключения выходов «Ошибка» модуля к контроллеру


#### ПРИЛОЖЕНИЕ В

#### Подключение питания



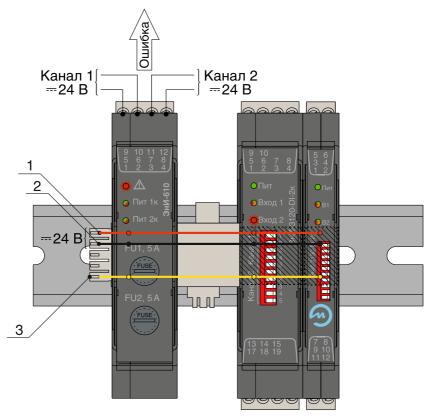

- 1 плюсовая шина питания TBUS, контакт 5;
- 2 минусовая шина питания TBUS, контакт 4.

Рисунок В.1 — Вариант подключения питания при помощи разъемов МС 1,5/5 ST 3,81 или IMC 1,5/5 ST 3,81 с винтовыми клеммиками



- 1 плюсовая шина питания TBUS, контакт 5;
- 2 минусовая шина питания TBUS, контакт 4.

Рисунок В.2 — Вариант подключения питания от блока питания БПИ-24-TBUS



- 1 плюсовая шина питания TBUS, контакт 5;
- 2 минусовая шина питания TBUS, контакт 4;
- 3 шина «общая ошибка» TBUS, контакт 1.

Рисунок В.3 — Вариант подключения питания от модуля питания и контроля ЭнИ-610

# Для заметок

| - |      |  |
|---|------|--|
|   |      |  |
|   |      |  |
|   |      |  |
|   |      |  |
|   |      |  |
|   |      |  |
|   |      |  |
|   |      |  |
|   |      |  |
|   |      |  |
|   |      |  |
|   |      |  |
|   |      |  |
|   |      |  |
|   |      |  |
|   |      |  |
|   |      |  |
|   |      |  |
|   |      |  |
|   |      |  |
|   |      |  |
|   |      |  |
|   |      |  |
|   |      |  |
|   |      |  |
|   |      |  |
|   |      |  |
|   |      |  |
|   | <br> |  |
|   |      |  |
|   |      |  |
|   |      |  |
|   |      |  |

## Для заметок

|   | <br> |
|---|------|
|   | <br> |
|   |      |
|   |      |
|   |      |
| - |      |
|   |      |
|   |      |
|   |      |
|   |      |
|   |      |
|   |      |
|   |      |
|   |      |
|   |      |
|   |      |
|   |      |
|   |      |
|   |      |
|   |      |
|   |      |
|   |      |
|   |      |
|   |      |
|   |      |
|   | <br> |
|   |      |
|   |      |
|   |      |
|   |      |
|   |      |
|   |      |

## Для заметок

| <br>_ |
|-------|
|       |
| <br>_ |
|       |
|       |
|       |
|       |
|       |
| <br>  |
|       |
| <br>  |
|       |
| <br>  |
|       |
|       |
|       |
| <br>_ |
|       |
| <br>_ |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
| <br>  |
|       |
| <br>  |
|       |
|       |





ООО «Энергия-Источник»
454138 г. Челябинск, пр. Победы, 290, оф. 112
Отдел продаж: тел. +7 (351) 239-11-01 доб. 1
Служба техподдержки: тел. +7 (351) 239-11-01 доб. 3
Е-Mail: info@en-i.ru
www.eni-bbmv.ru